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Abstract
The excitonic insulator was predicted numerous times by theory, but the
experimental observation is conspicuous by absence. We demonstrate that,
even under ideal circumstances, an excitonic insulator cannot be created by
means of coherent optical excitation. If dephasing is neglected, a non-stationary
excitonic insulator may arise. If a dephasing is taken into account, a hypothetical
excitonic insulator would disappear within the characteristic dephasing time.
Moreover, we find that dephasing prevents the buildup of the excitonic insulator
from the beginning.

1. Introduction

The theory of superconductivity by Bardeen, Cooper, and Schrieffer (BCS theory) was a
breakthrough in theoretical solid-state physics, and was successful in explaining basic statistical
properties of superconductors [1]. A key result of the BCS theory is the observation that an
arbitrarily small attraction between electrons of opposite spin leads to an energy gap and to
pairing states.

The above theoretical concepts were introduced to semiconductor physics in the sixties [2].
Formal analogy to the BCS theory led to the prediction of an ‘excitonic phase’ in semimetals
and small-gap semiconductors. Since excitons, the analog of Cooper pairs, are electrically
neutral, this state is often referred to as an excitonic insulator. Intuitively it is plausible that,
if the forbidden gap Eg is smaller than the exciton binding energy EB , rearrangement of the
dispersions should take place, otherwise the excited state would be below the ground state.

Shortly afterwards, an excitonic phase was also predicted for highly excited
semiconductors with a finite stationary density of electrons and holes [3–6]. The theory
goes alongside the theory for small-gap semiconductors, except that the electron and hole
dispersions are renormalized by the chemical potentials µe and µh, and the main results can
be adopted if the forbidden gap Eg is replaced by Eg − µe − µh.

The realization of short laser pulses, the improvement of the sample quality, and the
development of low-dimensional semiconductors fostered the interest in those coherent states
of electrons and light in semiconductors that were previously reported only in atomic and
molecular systems. In 1986, the optical Stark effect was measured on GaAs/(Ga,Al)As
quantum wells by Mysyrowicz et al [7], and was explained by Schmitt-Rink and co-workers
on the basis of the semiconductor Bloch equations [8]. Very recently, another coherent effect, a
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tiny non-resonant contribution below the pump frequency, ‘hyper-Raman gain,’ was observed
in bulk GaAs [9]. The theory, also based upon the semiconductor Bloch equations, perfectly
reproduces the experimental results [10].

The semiconductor Bloch equations in the absence of an electromagnetic field give rise to
a gap equation—the same as in the theory of the excitonic insulator. This time, the forbidden
gap has to be replaced by Eg − h̄ωp, where ωp is the frequency of the laser. Thus the photon
energy acts like a chemical potential, a fact which has been elaborated in detail by Comte and
Mahler [11, 12]. This theoretical result may suggest that an excitonic insulator can be created
by excitation of a semiconductor with coherent light.

After this progress, it looks like the experimental observation of the excitonic insulator is
at hand. During the last ten years, the number of publications on subjects such as excitonic
insulators, Bose condensation, and superfluidity of excitons has dramatically increased [13–
18]. However, much confusion results from the fact that authors do not always clearly
distinguish between those concepts. Part of the reason is that some early works stated that
excitonic insulator and Bose condensation of excitons would be the same [3, 6]. A recent
monograph is devoted to studying the similarities and differences of the various condensation
phenomena [19].

Let us focus on the excitonic insulator, which has been studied theoretically in recent
years by Glutsch, Östreich, Chu, Zhu, Ferraz, Shi, Fernández-Rossier, and others [13–16].
The optical absorption has been calculated several times [13–15]. For resonant excitation,
the optical spectrum is characterized by a strong maximum above and a gain region below
the effective chemical potential. The results are qualitatively the same for three-, two- and
one-dimensional semiconductors.

The correspondence between superconductor and excitonic insulators was emphasized by
many authors. Yet this formal analogy is seductive. Let us briefly point out some important
differences.

(a) The superconductor is the absolute ground state and the time scale for a conductor to
reach the superconducting state is not crucial at all. In contrast, the excitonic insulator is
an intermediate state and the formation of an excitonic insulator competes with relaxation
processes which attempt to bring the system into the ground state.

(b) In the theory of superconductivity the approximate Hamiltonian ĤBCS does not commute
with the number operator N̂ = N̂↑ +N̂↓ , but the exact Hamiltonian is particle-conserving.
The success of the grand-canonical formalism, despite [ ĤBCS , N̂ ] �= 0, is likely due to
‘cancellation of errors.’ The situation is completely different for the excitonic insulator:
the total number of electrons and holes is not conserved, neither exactly, nor in the Hartree–
Fock approximation. Therefore, the common practice of introducing a grand-canonical
Hamiltonian for highly excited semiconductors is not backed up by the underlying physics.

(c) In a superconductor, the electron-phonon scattering is incorporated into the effective
electron–electron interaction. Ideally, the BCS state is not subjected to dissipation. In
contrast, the excitonic insulator is solely an effect of Coulomb attraction. Hence the
excitonic insulator still faces dissipation due to electron–phonon scattering, and the order
of magnitude is the same as for independent electrons and holes. It is also worthwhile to
note that subtracting the chemical potentials from the dispersions in the case of a highly-
excited semiconductor is equivalent to a rotating frame [5]. The supposed stationary state
is then characterized by an oscillating polarization and, consequently, by radiative decay.

For the above reasons, the process of how the semiconductor evolves into the state of
an excitonic insulator is crucial. The situation is different for highly-excited and coherently-
driven semiconductors. In a highly-excited semiconductor the initial situation is characterized
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by Fermi seas of electrons and holes. The history, how the electrons and holes were created
in the first place, is irrelevant. It does not make a difference, for example, whether the
carriers are induced by light or injected by electric currents. In a coherently driven excitonic
insulator, the coherent state is induced by a laser pulse and the electron-photon system remains
coherent all the time until the excitonic insulator is established. There is however a number
of limitations. Interactions beyond mean-field theory, such as electron–phonon and exciton–
exciton interaction lead to dephasing which inevitably destroys the polarization. For acoustic
phonons, this effect is still present in the low-density limit and at liquid helium temperature. In
order to comply with the gap equation, which assumes a sharp photon energy, the pump pulse
has to be spectrally narrow. On the other hand, a long pulse will increase the risk of dephasing
and relaxation.

To the best of our knowledge, there are only two publications that explicitly deal with the
time evolution of a coherently driven excitonic insulator. Glutsch and Zimmermann presented
time-dependent solutions for the density matrix in the absence of incoherent processes [13].
For resonant excitation, they observed a transition into an excitonic insulator, but the time
is much longer than any realistic coherence times. The correctness of this result has been
questioned by Östreich and Schönhammer on the basis of energy conservation [15]. At the
same time, they proposed another class of solutions, the ‘non-stationary excitonic insulator’
which is characterized by a frequency different from the pump frequency. It was demonstrated
for a simplified model that a non-stationary excitonic insulator can be achieved by coherent
optical excitation.

In this paper we calculate the time evolution of the density matrix for a large variety
of detunings, pulse lengths, and amplitudes. The calculations are done (i) neglecting any
incoherent processes, thus assuming the best case, and (ii) with phenomenological dephasing.
For no set of parameters an excitonic insulator is obtained. We also show that the lifetime of a
hypothetical excitonic insulator is no longer than the dephasing time. The paper is organized as
follows: in section 2 we introduce the basic notations, equations, and the numerical algorithm;
the results of the calculation are shown in section 3; and a summary and conclusions are given
in section 4.

2. Basic equations

The theoretical analysis is based upon density matrix theory. The density matrix in Bloch
representation is defined as

Njj ′(k) = 〈
â

†
j ′k âjk

〉
(1)

where â
†
jk ( âjk ) is the creation (annihilation) operator of a Bloch electron with band index j

and wave-vector k.
We consider a direct two-band semiconductor. The conduction (c) and valence (v) band

dispersions are assumed to be parabolic, i.e. Ec,v(k) = Ec,v(0) ± h̄2k2/2me,h with effective
electron and hole masses me,h > 0. The transition from valence to conduction band shall be
optically allowed with a dipole matrix element µ. The pump field is assumed to have the form
Ep(t) e−iωpt + c.c., where ωp is the pump frequency and Ep(t) is a slowly varying amplitude.
Furthermore, we assume zero temperature so that, in the case of no optical excitation, the
valence band is completely occupied and the conduction band is completely empty. The
equation of the density matrix in the rotating frame is given by the semiconductor Bloch
equations [8]
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ih̄
∂

∂t
N(k, t) = [H(k, t) , N(k, t) ] + ih̄

∂

∂t
N(k, t)

∣∣∣∣
corr

(2)

H(k, t) =
(
Ec(k) − 1

2 h̄ωp −µEp(t)

−µ∗E∗
p(t) Ev(k) + 1

2 h̄ωp

)
−
∫

d3k′

(2π)3
V (k−k′)

[
N(k′, t) − N(0)(k′)

]
lim

t→−∞N(k, t) = N(0)(k) =
(

0 0
0 1

)
.

The statically screened Coulomb potential is V (k) = e2/ε0εk
2, where ε is the background

dielectric constant of the semiconductor.
First, we study the properties of equation (3) in the absence of correlation, i.e. when

∂N/∂t
∣∣
corr = 0. Then the trace and the determinant of N(k, t) are conserved for each k.

Therefore, we may write the density matrix in the form:

N(k, t) =
(

n(k, t) ψ(k, t)

ψ∗(k, t) 1 − n(k, t)

)
(3)

where n is referred to the occupation of the conduction band and ψ is called the microscopic
polarization. These functions are related to each other by n(k, t) [ 1 − n(k, t) ] = |ψ(k, t)|2
for each k. Important macroscopic quantities, which can be calculated from the elements of
the density matrix, are the electron density

ρ(t) =
∫

d3k

(2π)3
n(k, t) (4)

which is equal to the hole density or the density of electron–hole pairs, and the macroscopic
polarization

P(t) = µ∗
∫

d3k

(2π)3
ψ(k, t). (5)

Strictly speaking, since we have introduced the rotating frame, P is the slowly varying
amplitude of the macroscopic polarization.

Before we turn to the time-dependent solutions of equation (3), let us first have a look at
the stationary solutions N for the density matrix. They may occur for the constant pump field
amplitude Ep and are characterized by

[H(k) , N(k) ] = 0 . (6)

The above equations are usually solved by the method of the Bogoliubov transformation: since
H and N are commuting Hermitian matrices, there has to be a unitary transformation which
simultaneously diagonalizes H and N . The eigenvalues of H are interpreted as quasiparticle
dispersions, in analogy to the Cooper pairs in the BCS theory. Alternatively, the stationary
states can be found by the pseudo-spin representation [13, 15, 20], which has the advantage
of providing some graphic illustration. As result, the elements of H are given by the coupled
equations

Hcv(k) = −µEp +
∫

d3k′

(2π)3
V (k−k′)

Hcv(k
′)√

[Hcc(k′)−Hvv(k′)]2 + 4|Hcv(k′)|2
(7)

Hcc(k) − Hvv(k) = Ec(k) − Ev(k) − h̄ωp

(8)

−
∫

d3k′

(2π)3
V (k−k′)

[
1 − Hcc(k

′) − Hvv(k
′)√

[Hcc(k′)−Hvv(k′) ]2 + 4|Hcv(k′)|2
]
.
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In the absence of an external electromagnetic field Ep, the first equation has the same
structure as the gap equation of the BCS theory. Therefore, this nontrivial solution of the
semiconductor Bloch equations (3) is referred to as an excitonic insulator. This state is
postulated in many theoretical papers on coherently driven semiconductors [8–16]. The fact
that the quantity Hcc(k) − Hvv(k) has to be calculated self-consistently does not change the
result qualitatively, as can be seen from comparing figure 1 of [12] (no self-consistency) and
figure 2 of [13] (self-consistency).

Apparently, the only parameters in equations (3) and (8) are the relative exciton mass
m = memh/(me+mh), the pump detuning Ec(0) − Ev(0) − h̄ωp, and the coupling to the
electromagnetic field µEp. In order to eliminate unnecessary degrees of freedom, we set the
forbidden gap Ec(0)−Ev(0) equal to zero, thus defining h̄ωp relative to the gap. Furthermore,
we go over to natural units, h̄ = m = e2/4πε0ε = 1. Then the units of energy, length, and
time are me4/(4πε0ε)

2h̄2 (twice the exciton binding energy), 4πε0εh̄
2/me2 (the Bohr radius

of the exciton), and h̄(4πε0ε)
2/me4. For further simplification, we set µ = 1, which means

that Ep has the dimension of an energy and is measured in units of two exciton Rydbergs. For
GaAs, the above natural units are 9.34 meV, 11.6 nm, and 70.5 fs; and µEp = 0.5 corresponds
to a pump intensity of roughly 55 MW cm−2.

The excitonic insulator is predicted on the basis of equations (7)–(8), which are derived
under the assumption that correlation effects can be totally neglected. This is obviously
unrealistic and it is worthwhile to study the influence of incoherent processes on the stability
of the excitonic insulator. The simplest extension of the model, which is still consistent with
the Hartree–Fock approximation is the assumption of exponential dephasing, namely

∂

∂t
N(k, t)

∣∣∣∣
corr

=
(

0 −γ ψ(k, t)

−γ ψ∗(k, t) 0

)
(9)

with a dephasing constant γ > 0. The quantity T2 = 1/γ is known as the dephasing time.
Microscopically, the above ansatz is equivalent to stochastic fluctuations of the band edges in
the fast-modulation limit [21], which are attributed to the interaction of the electrons with a
phonon bath. This is the reason why the simple T2 ansatz works very well in practice. Four-
wave-mixing experiments have revealed an exponential decay of the polarization over a range
of three decades [22].

The diagonal elements of the density matrix are also subjected to incoherent processes,
which leads to the relaxation of carriers. These processes are rather inefficient near the band
edge. The density of states approaches zero at the band edge and the carrier distributions are
nearly thermal, which is unfortunate both for electron–electron and electron–phonon scattering.
Furthermore, LO-phonon scattering, the most important scattering mechanism, is forbidden by
energy conservation (GaAs: h̄ωLO = 36 meV). This is also well established by experiments
and quantum-kinetic calculations [23]. Recombination, that is the annihilation of electron-hole
pairs, is by order of magnitude slower than dephasing and relaxation.

In order to numerically solve the equation of motion (3), we exploit the spherical
symmetry of H(k) and N(k), and the wave number k = |k| is discretized on a finite interval
k ∈ [ 0 , kmax ] ; kmax = 65 with a mesh size "k = 0.03. By the sampling theorem, this is
equivalent to a discretization in real space with rmax = 100 and "r = 0.05. The convolution
with the Coulomb potential was performed by Fourier transform. Stability is a major issue for
the discretization in time. We used the central-difference or leapfrog method,

N(k, t + "t) − N(k, t − "t)

2"t
= −i [H(k, t) , N(k, t) ] (10)

which has previously been successfully tested on nonlinear Schrödinger equations [24].
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Figure 1. Pair density ρ of the excitonic insulator versus pump frequency ωp for different pump
amplitudes Ep = 0, 0.01, and 0.02.

The maximum step size, for which the above scheme is stable, is equal the reciprocal norm of
the superoperator [H(kmax) , · ] , and can be estimated as "tmax = 2/k2

max.
Accuracy and stability of the numerical algorithm have been verified by (i) extracting

the linear absorption from the low-field limit, (ii) reproducing the adiabatic following in the
regions below the 1s exciton resonance and between the 1s and 2s exciton resonance, using
the excitonic insulator (upper branch in figure 1) as initial condition, and (iii) testing the
convergence with respect to the parameters kmax, "k, and "t . The numerical result for the
linear spectrum was found to be accurate up to ω = 10, which is far above the upper frequency
limits of the pulses to be used.

3. Results

To determine the stationary solutions of the semiconductor Bloch equations (3) in the absence
of dephasing, we numerically solve the equations (7)–(8). In figure 1, the density ρ is plotted
versus the pump frequency ωp, relatively to the fundamental gap of the semiconductor.
Solutions are shown for Ep = 0 (solid line), 0.01 (dashed line), and 0.02 (dotted line).
Non-trivial solutions (solid line) always start at the exciton resonances Eν = −1/2ν2. For
ωp < E1 = −1/2, there is only one solution ρ for each Ep and it holds that ρ → 0 as
Ep → 0. Thus, no excitonic insulator can be optically generated in this region. For excitation
above the first exciton resonance, there are three solutions for a fixed value of Ep. As Ep

goes to zero, the upper two branches go over into the non-trivial solution and the lower branch
approaches the trivial solution with ρ = 0. Although, in principle, an excitonic insulator is
possible in the region E1 = −1/2 < ωp < E2 = −1/8, this state is unlikely to be realized
through adiabatic pulse excitation, because there is no continuous transition from the lower
branch to the upper branches of the solution. If the pulse is made intentionally short in order
to flip the system over to the upper branch, or the field strength is increased to values where
there is only one solution in this region, the adiabaticity is destroyed and the system may not
become stationary again. Beyond the second exciton resonance the structure of the solution is
going to be even more complicated, because the line of demarcation given by the non-trivial
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solution is falling backwards (not shown). Anyway, in this case one cannot speak about the
pump pulse being situated between two exciton resonances and only the uppermost branch
of the solution is of practical interest. In the end, only a numerical calculation can clarify
the relationship between the stationary solutions of equations (7)–(8) and the time-dependent
solutions of equation (3).

For the time-dependent solution of equation (3) we use a Gaussian pulse envelope of the
form

Ep(t) = Emax exp(−t2/2σ 2) (11)

which should be close to ideal, because the product of frequency bandwidth and time duration
is at minimum. We believe that this assumption does not limit the generality of the results.
Anyway, the experimental setup does not allow the design of arbitrary laser pulses.

The signatures of an excitonic insulator would be (i) a stationary density and (ii) a constant
polarization since, by means of the rotating-wave approximation, the pump frequency is
incorporated in the band dispersions (3).

We focus on resonant excitation, ωp > E1, where figure 1 proposes non-trivial solutions.
The semiconductor Bloch equations (3) were solved for various parameters −0.3 � ωp �
+0.3, 0.005 � Ep � 0.4, 1.0 � σ � 16, without dephasing (γ = 0) and with dephasing
(γ = 0.1). Out of the multitude of data, only a few curves can be shown.

First, we study the collision-free case with γ = 0. In figure 2(a), the time evolution
of the pair density ρ is shown for fixed pump frequency ωp = −0.3, fixed pulse length
σ = 4, and different pump amplitudes Emax = 0.005, 0.01, 0.02, and 0.04. In each case, a
finite density is created and the density always remains constant for times much larger than
the pulse length. However, a look at the polarization reveals that the solutions are not at all
stationary. In figure 2(b), the functions Reψ(k=0, t) (solid line) and Reψ(k=1, t) (dashed
line) are plotted versus t for the same parameters. The oscillations are completely irregular
and strongly dependent on the pump amplitude. There is hardly any correlation between the
oscillations at different wave numbers. The density, which would correspond to an excitonic
insulator, ρ = 0.0172 (figure 1), is obtained for Emax = 0.0262. Even if Emax is tuned such
that the stationary density equals the density of the excitonic insulator, the polarization shows
strong beats at any value of k (not shown).

Figure 3(a) shows the density versus time for a much longer pulse σ = 16. The other
parameters are the same as in figure 2. The pump intensity I (t) ∝ |E(t)|2 is shown as a dotted
curve. Due to the large pulse length and the neglect of dephasing, the system may follow the
pump pulse adiabatically. This is possible only as long as a lowest branch of the stationary
solution at the given pump frequency exists (figure 1). Indeed, in those cases (Emax � 0.01)
we observe adiabatic following of the density. For larger pulse amplitudes, the density rapidly
increases and exceeds the density of the excitonic insulator. The time-dependent polarization is
shown in figure 3(b). The polarization ψ(k, t) is completely irregular for each k. An exception
is a pump amplitude Emax = 0.02, which will be discussed later in some more detail. Even
for those pulses where we observed adiabatic following of the density, there is still some
polarization left after the end of the pulse. Again, we find that, when the field is chosen such
that the stationary density equals the density of the excitonic insulator (Emax = 0.0167, not
shown), the polarization is not stationary. This is consistent with figure 1, where a quasi-static
transition into an excitonic insulator is forbidden by the topology of the solution.

We have also studied the time evolution of density and polarization for different pump
frequencies and pulse lengths. The result is essentially the same: while the density always
approaches a stationary value, the components of the polarization show irregular oscillations,
which are sensitive to the parameters of the pump pulse. Figure 4 shows the time dependence



282 K Hannewald et al

of density (a) and polarization (b) for various pump frequencies ωp = −0.3,−0.1,+0.1 and
+0.3. The other pulse parameters are fixed at Emax = 0.02 and σ = 8. For ωp = −0.3,
the stationary density is above the density of the excitonic insulator at ωp = −0.3. For the
higher pump frequencies, the stationary density remains below the excitonic-insulator density
at those pump frequencies. Moreover, the function ρ(t) is virtually the same for all pump
frequencies ωp � −0.1 and there is no difference between pump frequencies below and above
the continuum edge. This weak dependence on the pump frequency is also observed for other
values of the amplitude and pulse length, independent of whether the stationary density lies
below or above the excitonic-insulator density (not shown), and can be explained as follows:
the 1s exciton, by virtue of its large oscillator strength, most strongly contributes to the density
of the excitonic insulator. If the spectral overlap of the pump pulse with the 1s exciton is
negligible, the response of the system is essentially non-resonant. This is also seen in the
polarization (figure 4 (b)): for excitation which is non-resonant to the 1s exciton, different
components of the polarization oscillate with completely different frequencies, as one would
expect from interaction-free particles.

It is worthwhile to revisit the case where different k-components of the polarization
oscillate with about the same frequency (ωp = −0.3; σ = 16; Emax = 0.02, second from the
top in figure 3 (b)). We studied the polarization for pump amplitudes in the neighborhood of
Emax = 0.02 in some more detail and found that for each wave number the polarization shows
oscillations proportional to exp(−2πit/T ) with a period T = 30. Since we operate in the
rotating frame, the actual frequency, relative to the band edge is ω = ωp + 2π/T = −0.09.
For a slightly smaller amplitude, Emax = 0.0195, the stationary density ρ = 0.0389 is equal
to the density of the excitonic insulator at ω = −0.09. This is the non-stationary excitonic
insulator, as previously described by Östreich and Schönhammer [15]: depending on the
energy transmitted by the pump pulse, the system may exhibit collective oscillations with a
frequency that differs from the pump frequency. In figure 5, real part (solid line) and imaginary
part (dashed line) of the polarization are shown for different wave numbers k = 0, 1, and 3.

Figure 2. Time evolution of the pair density and polarization for ωp = −0.3, σ = 4, γ = 0,
and different pulse amplitudes Emax = 0.005, 0.01, 0.02, and 0.04. (a) ρ versus t . (b) Reψ(k, t)

versus t for k = 0 (solid line) and k = 1 (dashed line).
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Figure 3. Time evolution of the pair density and polarization for ωp = −0.3, σ = 16, γ = 0,
and different pulse amplitudes Emax = 0.005, 0.01, 0.02, and 0.04. (a) ρ versus t (solid line) and
pump intensity I (t) ∝ |E(t)|2. (b) Reψ(k, t) vs. t for k = 0 (solid line) and k = 1 (dashed line).

Figure 4. Time evolution of the pair density and polarization for Emax = 0.02, σ = 8, γ = 0, and
different pump frequencies ωp = −0.3,−0.1,+0.1, and +0.3. (a) ρ vs. t . (b) Reψ(k, t) vs. t for
k = 0 (solid line) and k = 1 (dashed line).

The pulse amplitude is Emax = 0.0195 and the other parameters are the same as in figure 3.
In the long-time limit, the components of the polarization show oscillations that are almost
sinusoidal, and have the same period T = 30 for each k. Moreover, like the excitonic insulator,
the complex phase is the same for each ψ(k, t).
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Figure 5. Polarization Reψ(k, t) (solid line) and Im ψ(k, t) (dotted line) versus time t at different
wave numbers k = 0, 1, 3 for a non-stationary excitonic insulator. The parameters of the pulse are
ωp = −0.3, σ = 4, and Emax = 0.0195.

At this point we conclude that, if dephasing is neglected, the creation of an excitonic
insulator in the strict sense is not possible by pulse excitation. On the other hand, the transition
into a non-stationary excitonic insulator may occur for certain parameters.

Now we turn to the situation, when the polarization is subjected to dephasing. We will
specifically address two questions: (i) provided the system is prepared in the state of an
excitonic insulator, what is the time scale for the relaxation into the normal state? and (ii) how
is the creation of the excitonic insulator itself affected by the dephasing?

The answer to question (i) is that the lifetime of an excitonic insulator equals T2. For a
proof, we assume that the semiconductor is in the state of an excitonic insulator at t = 0 so
that [H(k, 0) , N(k, 0) ] = 0. From equations (3) and (9) it follows immediately that

N(k, t) =
(

Ncc(k, 0) Ncv(k, 0) e−γ t

Nvc(k, 0) e−γ t Nvv(k, 0)

)
for t � 0 . (12)

Thus the components of the polarization decay exponentially, whereas—in this
approximation—the diagonal elements of the density matrix remain unchanged. This result
also applies to the non-stationary excitonic insulator, which is equivalent to an excitonic
insulator at a frequency that differs from the pulse frequency. While this result is not
encouraging, at least it leaves us with the hope of observing an excitonic insulator within
a time span of T2 (e.g., when the delay between pump and probe pulse is smaller than T2).

To answer question (ii), we numerically solve the semiconductor Bloch equations (3),
with a dephasing term according to equation (9) and a dephasing constant γ = 0.1 (GaAs:
T2 = 705 fs). For comparison with the collision-free case, we use the same parameters as in
figure 3: ωp = −0.3, σ = 16, and Emax = 0.005, 0.01, 0.02, 0.04. The results for the density
and polarization are shown in figure 6(a) and (b), respectively. For low pump intensities, no
adiabatic following of the density is observed. Instead, the density increases monotonically to a
finite value. In contrast to the collision-free case, the polarization always drops to zero. Yet the
components of the polarization are very different from the collision-free result, multiplied with
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Figure 6. Time evolution of the pair density and polarization in the presence of dephasing with
γ = 0.1. The other parameters are the same as in figure 3.

exp(−γ t), as suggested by equation (12). This is prevalent for k = 1, where the polarization
shows much less oscillations than in the collision-free case. Also, for Emax = 0.02, which is
close to the non-stationary excitonic insulator in the collision-free case, there is no correlation
whatsoever between ψ(k = 0, t) and ψ(k = 1, t). We also checked pulse amplitudes in the
vicinity of Emax = 0.02 and came to the same result. In conclusion, a finite dephasing time
does not only destroy an excitonic insulator, but also prevents the buildup of the excitonic
insulator by pulse excitation.

4. Summary

In summary, we have provided an accurate solution of the semiconductor Bloch equations,
including continuum states, without dephasing and in the framework of linear exponential
dephasing. The time-dependent pair density has been compared with the stationary solution
(gap equation) for a large variety of parameters.

For no set of parameters was an excitonic insulator directly obtained by pulse excitation.
In the collision-free approximation, for certain parameters, a non-stationary excitonic insulator
is obtained.

The effect of dephasing is devastating. If a hypothetical excitonic insulator is exposed
to dephasing, the non-diagonal elements of the density matrix decay exponentially with
characteristic time T2. If the dephasing is taken into account from the very beginning, no
excitonic insulator is created. Thus we conclude that the excitonic insulator is unlikely to be
realized by means of coherent pulse excitation.
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